IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002 889

Application-Specific Clustered VLIW Datapaths:
Early Exploration on a Parameterized Design Space

Viktor S. Lapinskii, Member, IEEE, Margarida F. Jacome, Senior Member, |EEE, and
Gustavo A. de Veciana, Senior Member, |EEE

Abstract—Specialized clustered very large instruction word
(VLIW) processors combined with effective compilation tech-
niques enable aggressive exploitation of the high instruction-level
parallelism inherent in many embedded media applications, while
unlocking a variety of possible performance/cost tradeoffs. In this
work, the authors propose a methodology to support early design
space exploration of clustered VLIW datapaths, in the context
of a specific target application. They argue that, due to the large
size and complexity of the design space, the early design space
exploration phase should consider only design space parameters
that have a first-order impact on two key physical figures of merit:
clock rate and power dissipation. These parameters were found
to be: maximum cluster capacity, number of clusters, and bus
(interconnect) capacity. Experimental validation of their design
space exploration algorithm shows that a thorough exploration
of the complex design space can be performed very efficiently in
this abstract parameterized design space. Moreover, an empirical
study carried out on a representative set of computation-intensive
benchmarks suggests that “penalties” of clustered versus cen-
tralized datapaths are often minimal and that clustering indeed
unlocks a variety of valuable design tradeoffs.

Index Terms—Application-specific processors, compilers,
custom VLIW datapaths, design space exploration, embedded
systems, power optimization.

. INTRODUCTION

SIGNIFICANT segment of embedded multimedia appli-

cations exhibits high instruction-level parallelism (ILP)
in the most time-critical inner loop bodies. Very large instruc-
tion word (VLIW) application specific instruction set processors
(ASIPs) provide a means to efficiently exploit such ILP. In this
work, we focus on early design space exploration of datapaths
for these processors.

A “simple” VLIW datapath may include a centralized register
file (RF) with several functional units connected to it through
read and write ports. With a sufficient number of functional units
and an adequate memory bandwidth, a compiler can potentially
utilize all of the available static ILP present in the time-crit-
ical segments of the application. However, as the number of
functional units (and thus register file ports) increases, “central-
ized” architectural solutions tend to become exceedingly costly

Manuscript received June 1, 2001; revised November 6, 2001. This work
was supported in part by the National Science Foundation under ITR Grant
ACI-0081791 and Grant CCR-9901255 and by the Texas Higher Education Co-
ordinating Board under Grant ATP-003658-0649. This paper was recommended
by Associate Editor R. Camposano.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Texas at Austin, Austin, TX 78712 USA (e-mail:
lapinski@ece.utexas.edu; jacome@ece.utexas.edu; gustavo@ece.utexas.edu).

Publisher Item Identifier 10.1109/TCAD.2002.800451.

Bus
l Register File | Register File |

Cluster B

Cluster A

Fig. 1. Clustered datapath model.

[1]-[3] in terms of clock rate, power, area, and overall design
complexity.

In order to control the penalties associated with an excessive
number of RF ports, while still providing all functional units
necessary to exploit the available ILP, one can restrict the con-
nectivity between functional units and registers, in particular, by
structuring a VLIW datapath into a set of clusters. Each cluster
in the datapath contains a set of functional units connected to
a local register file (see Fig. 1). The idea of restricting connec-
tivity is not new and in fact has been extensively used in ASIP
synthesis [4]-[7] and in high-performance computer architec-
tures [8]. Recent industry and research projects specifically tar-
geting clustered VVLIW architectures include [9]-[14]. In such
architectures explicit data transfer operations are typically re-
quired to move data from one cluster to another, which may
lead to increased schedule latency and energy consumption. The
number and type of functional units instantiated in each cluster
also directly affects the performance of the system.

The focus of this paper is on early design space exploration
aimed at identifying clustered datapath configurations that are
likely to be suitable for a given target application, i.e., effectively
execute a (typically) small set of time/energy-critical code seg-
ments. For the vast majority of the applications of interest these
code segments comprise a few loop kernels. Design space ex-
ploration of clustered VLIW ASIP datapaths involves complex
tradeoffs among clock rate, schedule latency, and power/energy
consumption. (Note that, as mentioned above, we focus on the
application’s time-critical loop bodies. Therefore, the latency of
a kernel’s schedule is, in fact, the initiation interval of the corre-
sponding loop.) For example, as the number of functional units
per cluster increases, one may expect the penalty associated with
data transfers between clusters to decrease, leading to shorter
schedule latencies. However, the corresponding increase in the
number of register ports leads to a nonlinear (up to N3) growth
in combinatorial delay, power dissipation, and area [1]. Thus,

0278-0070/02$17.00 © 2002 IEEE

890 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

Design space parameter 1

(@] | |] :

1 1 1 L}]

8 g) ., . . L e ., k

e |__ipoo o i@B00: g _fgead i
E1igp im0 700 FTigpg

g] 1 1 1

2 : ! - -

¢ |..jopoi_ o0 _fped i _foeDd i
=9 EO = T R e L e L s Y -
o ' X | X

20 RSN T . — . T— . —

An individual design point
within a slice

Slice — a set of design points
sharing the same parameters

Fig. 2. Parameterized design space.

although the schedule latency (i.e., loop initiation interval) de-
creases, the clock rate may also have to be decreased, possibly
leading to decreased throughput.

As is typical in dealing with complex CAD and compiler
problems, to successfully explore the huge design space of
clustered VLIW ASIP datapaths, we resort to abstraction and
problem decomposition. Along with finding the appropriate
abstractions, the challenge is to identify the critical dimen-
sions of the design space, i.e., those capturing the salient
performance/cost tradeoffs, and to develop complementary
algorithms for design space exploration. As will be discussed
shortly, this goal is achieved by using a suitable parameteriza-
tion of the design space of clustered VLIW datapaths [15].

A. Figures of Merit

In our exploration, we consider two groups of figures of

merit: physical and application-specific.

1) Physical figures of merit characterize the performance of
a datapath itself, regardless of the specific code running
on it. Examples of such figures include achievable clock
rate f, power dissipation P, and silicon area A.

2) Application-specific figures of merit reflect characteris-
tics which depend on the application. They are further di-
vided in two subcategories.

— Basic application-specific figures of merit do not de-

pend on physical ones. Examples include the number
of clock cycles L in the schedule for a given kernel (i.e.,
loop body) and the number of data transfers between
clusters Ny during the execution of the kernel.

— Derived application-specific figures of merit do de-
pend on physical figures of merit—for example, the
kernel’s energy consumption £ and execution delay
L. The latter depends on the clock rate: L. = L/f.
We shall refer to the reciprocal of execution delay,
1/L; = f/L, as the throughput.

B. Design Space Parameterization

Let us introduce the concept of design space parameteriza-
tion, initially in a domain-independent (more abstract) form.
In our methodology, we partition the space into design space
slices. By definition, elements of each slice share the same
values for a set of design space parameters (see Fig. 2). The

key idea of our approach is that the design space parameters
must be carefully selected so that they have a first-order impact
on the most important physical figures of merit. Intuitively,
configurations within a given slice are likely to have a certain
degree of commonality in terms of their physical figures of
merit. This, in turn, enables decomposing the design space
exploration process itself into exploration on the level of slices
and exploration within each visited slice. The former focuses
on considering datapaths with distinct physical figures of merit,
the latter explores datapath configurations with respect to the
corresponding basic application-specific figures of merit.

The goal of the exploration is to “sample” the design space,
for various ranges of physical figures of merit, i.e., properly se-
lect a subset of design slices to be explored and, for each visited
slice, identify a design point that is likely to be one of the best
in the slice, in terms of its basic application-specific figures of
merit.

C. Exploration on a Parameterized Design Space of Clustered
VLIW Datapaths

The central idea driving the proposed early design space ex-
ploration approach is to make sure that the majority of rele-
vant regions of the design space are adequately visited/sampled
during the exploration, that is, to ensure that promising com-
binations of physical figures of merit (such as clock rate and
power) are exposed during this early exploration. Accordingly,
for each potentially interesting design space region (slice), our
algorithm derives the corresponding basic application-specific
figures of merit (e.g., the kernel’s initiation interval) for a good
datapath, representative of the slice.

In summary, the primary objective of the proposed early
exploration phase is to expose good datapath configurations
among the entire set of slices’ representatives. These, in turn,
are analyzed in subsequent exploration/design phases in terms
of derived application-specific figures of merit.:

According to the discussion in Section I-B, we state that at our
early exploration steps, one should identify and consider only
the datapath configuration parameters that have a first-order im-
pact on two key physical figures of merit: clock rate f and power
dissipation P (silicon area, per se, is not necessarily of major
importance, since today’s fabrication technology allows one to
cost-effectively place a large number of devices on a single chip
[16]). Let us now consider the rationale behind identifying and
selecting these design space parameters.

As mentioned earlier, clustered VLIW architectures address
the problem of superlinear growth of delay, power, and area with
the number of functional units (and thus—RF ports) in a cen-
tralized datapath. Thus, clustering can be viewed as enforcing
hierarchical/distributed organization of the datapath resources,
so0 as to enable scaling of the architecture to accommaodate high
levels of ILP. An additional advantage of designing systems that
adhere to some form of hierarchical/structured organization is
that such organization increases fidelity and accuracy of early
estimation of some key system figures of merit (such as delay,
power, and area) [1].

1At that later phase (not addressed here), detailed optimizations can be per-
formed on this reduced set of clustered datapaths.

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION 891

The parameters that describe the hierarchical structure? of a
clustered datapath should naturally expose the critical elements
of such VLIW datapaths. These parameters are likely to form
a basis of design space parameterization (introduced in Sec-
tion I-B), as discussed in the sequel.

* First, observe that the intercluster communication struc-
ture (bus) is a global resource, in that it must connect all
datapath clusters instantiated in the datapath. Therefore, as
empirically verified also by Rixner et al. [1], the number
of global buses instantiated in the datapath (which we call
bus capacity) is likely to have a first-order impact on the
datapath performance, power, and area.

 Second, the number of clusters instantiated in the datapath
has a first-order impact on the total area of the datapath,
and thus on the delay and power of the global communica-
tion structure, and therefore, again, is a parameter of major
importance that should be accounted for during early ex-
ploration.3

* Finally, we consider maximum cluster capacity—a pa-
rameter of a more “local” nature defining the maximum
number of issue slots used in any given cluster in the
datapath. Capacity of a cluster directly correlates to the
number of ports in the corresponding local register file.
This parameter (unlike the total number of functional units
in the datapath) gives us explicit control over the super
linear growth of delay, power, and area with respect to the
number of ports in a register file. Clusters with fewer func-
tional units will have fewer register ports in our model and
the register file delay in those units will be smaller. Thus,
at this level of abstraction, the largest cluster dominates.
Accordingly, maximum cluster capacity was chosen as a
design space parameter.

We denote the above-mentioned design space parameters
(first introduced in an earlier publication [15]) as follows:

» cluster capacity—number of functional units in the largest
cluster—Np;

e number of clusters—N¢;

* bus (interconnect) capacity—Ng.

As described in Section I-B, datapath configurations sharing
the above parameters are grouped into a design space slice de-
noted by S(Ng, Ne, Ng). The datapath in Fig. 1, for example,
is a member of slice S(3,2, 2).

In summary, then, we explore the space by varying the ILP
supported by individual clusters, the number of clusters, that
is, the actual ILP supported by the VLIW machine, and the ca-
pacity of the intercluster communication network. Recall that
the parameters exposed during our early first-cut exploration are
aimed at aggressively identifying potentially good tradeoff re-
gions for a given application, rather than synthesizing the final
datapath configuration (i.e., fully implementing a specific point
in the design space).

2Such hierarchical structure is sometimes called design style, see, e.g., Geurts
et al. [4].

3Note that different datapath design styles, such as the ASU-based style of
Cathedral [4] also expose the maximum number of hierarchical elements (i.e.,
ASUs) allowed on the datapath. In other words, they consider such a number as
a primary exploration/search parameter.

For an early design space exploration to be informative, one
must leave out all nonessential (secondary) parameters, as well
as parameters that show a strong correlation/dependence to
those which are already exposed. Register file size is such a
parameter since it should be strongly correlated to the number
of ports/issue width of a cluster. Indeed, it is known that
schedules with high ILP increase register pressure [17]-[21].
The “cost” of hardware support for such ILP (cluster capacity
Np) is already exposed in the proposed parameterization.
In a well-designed (balanced) datapath, the sizes of register
files should be selected to adequately support the computation
demands (ILP) enabled by the number of issue slots available
on each cluster, and thus should strongly correlate to cluster
capacity. Therefore, we dropped this parameter from explicit
consideration, acknowledging that there is always a price to
pay when automation and time considerations are introduced
in a design flow.

Similar factors influenced our decision to remove from this
early exploration phase the detailed characterization of the types
of operations supported by functional units associated with each
issue slot of a cluster (see Section II-E). It must be noted that the
definition of special-purpose functional units is of primary im-
portance in certain design methodologies, especially ones asso-
ciated with designing high performance hardware accelerators,
such as [4], [22], and [23]. In contrast, our target architecture
style can be classified as “custom VLIW datapath” (see also
Faraboschi et al. [9]) which targets processors that are supposed
to execute not only the critical kernels, but the entire application
or a significant part of it. Naturally, if this style alone fails to
deliver the performance/energy targets, one or more hardware
accelerators may need to be used for some of the time-critical
segments of the application. Design of hardware accelerators is
beyond the scope of this paper.

For simplicity (related to datapath implementation and com-
piler), in our custom VLIW architecture style we consider only
functional units implementing primary operation types. Note
that this decision is consistent with some top of the line commer-
cial clustered VLIW DSPs, such as TMS320C6000 [13] which
does not even contain multiply-accumulate units. In the research
arena, a similar strategy was adopted by HP’s Lx architecture
[9]. Thus, our main concern during this exploration was to en-
sure a good utilization of costly RF ports, by using quasiuni-
versal functional units, and to focus on identifying tradeoffs, re-
lated to the amount of ILP supported by the machine (see Sec-
tion 11-E). As in the previous case, we acknowledge that some
interesting design points may be missed during our early ex-
ploration, yet this is the cost of limiting the complexity of the
design space.

The phases following the proposed early design space explo-
ration (see Section I1) include detailed synthesis of an actual
datapath for the target machine. Detailed optimizations should
be performed on candidate clustered datapaths members of the
identified promising design space regions. These later steps are
beyond the scope of this paper.

D. Overview of the Algorithm

Given a set of time-critical kernels of interest, the design
space exploration algorithm presented in this paper assists the

892 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

9 v B
e, Memory System . F
Exploration / Design . Retal'getable Compller
~o s)
3 <7 C [Software Pipelining,
R
H . Unrolling, etc.
Estimation of %""'--.,) . . g ~
Physical A Fast Exploration Algorithm :
Figures of Merit: I
[J/

Clock Rate f,
Power P,
and Area A
e

Binding /
Instruction Scheduling

$ Register File Sizing . :
Y, Detailed FU Selection B
Port Sharing
i
\Y;

Fig. 3. The context for our design space exploration phase.

designer in aggressively pruning the huge design space down
to a limited number of promising datapath configurations. The
inputs to the algorithm are the time-critical application kernels
in a form of dataflow graphs and, optionally, ranges for the key
parameters Ng, N, and Ng to be considered during the ex-
ploration. The search/exploration is systematically performed
on a highly structured (“sliced”) design space—as illustrated
in Fig. 5. For each design space slice S(Ng, N, Ng), the al-
gorithm finds the most promising datapath configurations fo-
cusing on the basic application-specific figures of merit dis-
cussed above.

A promising configuration is one likely to optimize such basic
application-specific figures of merit—in particular, the schedule
latency (initiation interval) L and the number of data trans-
fers between clusters N,y for that optimal/minimum L. As
will be shown later, the search/exploration within each slice
S(Np,Nc, Ng) of the design space is performed by consid-
ering the execution of the target set of kernels on a carefully
selected small subset of datapath configurations in .S.

E. The Underlying Compilation Techniques

Code generation for processors with “irregular” architectural
features [17], such as distributed RF organization found in clus-
tered machines, require special, sophisticated techniques. At the
core of our exploration methodology lies an efficient algorithm
for binding operations in a dataflow graph (usually a time-crit-
ical loop body) to the clusters of a given datapath configura-
tion. The binding algorithm is designed to generate solutions
that first minimize latency and, second, minimize the number
of data transfers. The core binding algorithm, designed to de-
liver high-quality results, comprises two phases: 1) generation
of an initial binding solution and 2) iterative improvement of the

initial solution. Details of our algorithm can be found elsewhere
[24], [25].

The rest of the paper is organized as follows. Section Il in-
troduces the general framework that includes our design space
exploration phase. Based on empirical observations on the struc-
ture of the “promising” datapaths over design space slices in
Section 111, we propose an efficient algorithm for identifying the
set of datapath configurations within each slice that are likely to
be effective for the kernels of interest. In Section IV, we present
experimental results generated by the proposed design space ex-
ploration algorithm for a set of representative benchmarks. Our
case studies show that the algorithm thoroughly explores the
large and complex design space and does so in an efficient way
by carefully selecting for consideration only a small subset of
datapaths within each slice. We further present the results of an
empirical study of performance/cost tradeoffs associated with
clustered versus nonclustered machines. We contrast our work
with previous research in Section V and conclude in Section V1.

Il. CONTEXT FOR THE DESIGN SPACE EXPLORATION PHASE

Fig. 3 shows the exploration framework that includes our
proposed design space exploration phase. In what follows, we
briefly discuss its components in order to provide the context
for the proposed exploration phase.

A. On Estimation of Physical Figures of Merit

As mentioned above, our algorithm (see block D in Fig. 3)
finds datapath configurations that are “promising” with respect
to the basic application-specific figures of merit L and Ny .
Indeed, one of the distinctive features of our design space ex-
ploration methodology is its independence of implementation

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION 893

technology. A key advantage of such an approach is that, by
decoupling physical from application-specific figures of merit,
collections of “promising” datapath configurations can be gen-
erated up-front for various fundamental algorithm kernels. The
resulting design space characterization (see Section IV, Fig. 6
for an example) may be stored in an implementation-indepen-
dent library, together with the kernels, for future use.

When an application-specific processor for these kernels
needs to be implemented in a new target technology, f and
P estimates can be determined for the new technology [see
Fig. 3(a)] and used to compute the derived figures of merit.
Estimation of physical figures of merit is beyond the scope of
this paper; see, e.g., [4] and [26] for a good overview of such
techniques.

B. Memory Subsystem

Memory subsystem design decisions typically have a major
impact on the performance of data-intensive high-throughput
applications; see e.g., [4], [27]-[30]. Thus, design space explo-
ration pertaining to memory organization precedes our datapath
exploration phase, as indicated in Fig. 3(b). The output of this
phase should include a broad schedule of memory operations,
possibly defining a lower bound on schedule latency (or initia-
tion interval) L. Note that these load and store operations may
be software pipelined, in order to hide their latencies.

C. Narrowing the Design Space

The efficiency of the overall design space exploration process
may be a concern when one needs to explore the design space
for a large kernel. Under such conditions, the fast design space
exploration algorithm proposed in our previous work [15] can
be used first, as shown in Fig. 3(c) This will help to quickly
identify the ranges of parameters N, N¢, and Ng of interest
for such kernels, i.e., the area of the design space that ought to
be explored in detail by the proposed design space exploration
algorithm.

D. Register Files

As shown in Fig. 3(e), after our design space exploration
phase identifies promising datapath configurations, a more de-
tailed exploration is to follow, including register file sizing. In-
deed, as mentioned in Section I-C, during our design space ex-
ploration we do not explicitly size the register file in each cluster.
Yet, we assume that the sizes of these register files will be such
that the number of expensive spills to memory (i.e., expelling
of intermediate results from a register file) will be small and
not significantly affect performance. We argue that this is a rea-
sonable assumption, since in general it is undesirable to have
a machine with a large number of functional units and yet have
spills to memory degrading performance to a level achievable by
a “smaller” machine, i.e., by a machine with less parallelism. If
this is the case, a more compact machine/datapath (also to be
found by our design space exploration algorithm) is a superior
solution for that performance level.

4If high throughput is desirable, the full kernel may be software pipelined to
decrease the initiation interval [31].

E. Functional Units

Functional unit selection and port sharing exploration are
also performed after our design space exploration phase [see
Fig. 3(e)]. Indeed, one of the key abstractions underlying our
approach lies in the special treatment given to functional unit
types. We argue that during early design space exploration, the
precise definition of functional unit types should be postponed
and abstract types coarsely grouping the operation types
pertinent to the kernel of interest should be used instead. This
abstraction allows us to assume that exclusive (nonshared) reg-
ister ports are assigned to each such functional unit instantiated
in a cluster, while still ensuring a good utilization of such costly
resources as register file ports. In other words, given N (the
maximum number of functional units per cluster defined for a
slice S), by using abstract/coarse functional units we are likely
to generate good performance estimates for a specified kernel,
without engaging in a prohibitively costly simultaneous search
for precise port sharing configurations among fine-grained
functional units.

Note that these abstract functional unit types are not intended
to be actually used in the final datapath implementation. Once
the set of promising clustered datapath configurations is iden-
tified, more detailed specialization steps should be undertaken
in order to refine these “coarse-grain” functional units , as in-
dicated in Fig. 3(e). Such refinement steps include the imple-
mentation of each abstract type in terms of a number of actual
functional units sharing an issue slot (i.e., register file ports), the
possible elimination of support for selected (fine grain) opera-
tion types on individual issue slots, etc.

I11. DESIGN SPACE EXPLORATION

We start this section by defining the quality metrics used for
identifying promising datapath configurations. Then, we define
our proposed approach for searching for these promising con-
figurations in the parameterized design space and give some in-
sights on the characteristics of this design space. Finally, we will
present our design space exploration algorithm and show that it
efficiently takes advantage of these characteristics.

A. Quality Metrics

We define the combined latency (initiation interval) L of an
application’s set of time/energy-critical loop kernels (executed
on a given datapath) to be the weighted sum of the latencies
(initiation intervals) of those individual kernels. The weights
reflect the relative criticality of the kernels in the application.
For simplicity of the notation, throughout the rest of this section,
we assume this set contains a single kernel. For a given datapath
d € S(Np,Nc,Np), we let L(d) and Ny (d) denote the
latency and the number of moves obtained using an efficient
binding and scheduling of a target kernel on d, and let Ty (d)
denote the total number of functional units instantiated in the
datapath d.

The datapath d € S(Ng, Ne, Ng) is said to be lexicograph-
ically minimal if its associated vector (L(d), Masv (d), Tr(d))
is lexicographically the smallest among all datapaths in .S. In
other words, it achieves the minimum latency, and, then, among

894 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

37 E @ Number of busesNp = 2. E

- Ne=1 © -

- Ne=2 + =

- Number of clusters Ne=3 O =

E “-.‘:“‘. NC= 4 X E

23 — &, -

.| - -z
21— * & -
= -
& - z
5 _ _Z
- O -
= A -

1 I | I I I
2 3 4 5 6

This point, e.g., represents S(4,3,2); L*=9.

| | | t | b
7 8 9 10 11 12

Maximum Cluster Capacity Np

Fig. 4. Relevant slices of design space and their corresponding best latencies L* for DCT-DIT.

all datapaths with the minimum latency, it achieves a minimum
number of moves and, finally, among those it includes a min-
imum number of functional units. The rationale for this ordering
is to give priority to minimizing latency, then reducing the en-
ergy consumption associated with moves, and finally the total
number of required functional units. We noted, however, that in
practice it could be useful to identify sets of possible config-
urations achieving the minimum latency but relax the require-
ment on the minimum number of moves, while attempting to
minimize the total number of functional units allowed in the
datapath. Thus, we decided not to limit ourselves to the lexico-
graphically optimal datapath configurations mentioned above.
We formalize the relaxations implemented in our approach as
follows:

*

L(d)
L(d)

= min
d€S(Np,Nc,Ng)
Dy = argmin
deS(Nm,Nc,Ng)
N7,y = min NJWV d
My = R, (d)

Dy n-

T MV

= argmin Npsv(d)
dEDp «

Tr(d)

Trp = min
d€ED«
&Pr ’ NI\/I \4

D* ={d|d € Dy. and Tp(d) < T} .

In other words, in the context of a given basic block and a slice
S(Np,Nc, Np) of the design space:
1) L* is the best achievable latency (initiation interval)
among the datapaths within the slice;
2) Dy~ isasubset of S(Np, N, Ng) such that each data-
path in Dg. exhibits the optimal latency L*;

3) Nj ;v denotes the minimum number of moves achievable
for the best latency L*;

4) Dp» n:,., isasubsetof Dy, where each datapath d pro-
duces the minimum number of moves Ny, ;

5) 1% denotes the minimum total number of functional units
in a datapath achieving a minimum latency L* and a min-
imum number of moves for that L*;

6) D is the set of datapath configurations which achieve
the minimum latency and have no more functional units
than a lexicographically minimal solution, but may re-
quire more moves.5

Later on, we sometimes specify the parameters of the slice

explicitly, e.g., L*(Ng, Nc, Ng) or D*(Np, N¢e, Np).

B. Searching the Design Space

In order to investigate and gain insight into the challenging
problem of exploring the design space of clustered datapath
configurations, we started by developing a simple brute-force
algorithm that recursively enumerates all datapaths within
a specified slice and performs an exhaustive search over
all slices within a given set of parameter ranges. Thus, for
each datapath d € S(Np,N¢, Ng), we computed L(d) and
Ny (d). Among all datapaths in S{(Ng, Nc, Ng), we then
identified lexicographically minimal configurations, as well
as the set D* of “promising” configurations. Fig. 4 shows a
representative set of results for one such exhaustive exploration,
for the DCT-DIT benchmark (see benchmark descriptions in
Section V). Each point on the graph corresponds to the best
(minimum) latency L* achieved by executing the kernel on
datapaths D* within a given slice S(Ng, Nc, Ng). In this

50bserve that the set of configurations of interest D~ includes all lexico-
graphically minimal datapaths.

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION

895

TABLE |
DCT-DIT KERNEL: DATAPATH CONFIGURATIONS D* FOR SLICES WITH Ng = 2
Np = 2 3 4 5 6
Ncd
13,1}- 0
IL1]- o 2,1]]- o 12,2]- 0 —o 14,2]]- 0
1(0) L* =37 L* =23 L* =19 L*=14 L* =12
3,2]3,1} - 8
14,1)2,2} - 7
13,1)2,3] - 7
12,212,2] - 8 13,212,2| - 6| [2,2{4,2| -5
L]~ 7 - 7 13,112,21]-5| [14,13,2(]- 5{[13,314,21] - ¢
2(+) L* =19 L* =12 L*=10 L*=9 L*=38
11,1]2,1|2,1] - 13] |2,1]2,1j2,2| - 12
[11,1]1,1)1,1]| - 13 [12,112, 112,11 | - 11} 11, 1)3, 112,2] |- 7 {11,214,13,2| |- 7
3(0) L* =13 L* =10 L*=9 L*=8
1,11, 1]1,1]1,1] |- 13
4(x) L*=11
Np = 7 8 9 10 1n 12
N¢l
[6,2f -0 8,3] - 0
|5,2| -0} 5,3/ -0| 6,3/ -0 17,3| -0 [7,4] -0
[14,31]- 0| 14,4 |- 0][15,4 |- 0 [16,41]-0 16,51 o[7,5/ |- 0
1(0) L*=11| L*=10f L*=9 L*=8 L*=8| L*=
13,1/5,5 - 5 11, 116,5| - 4
’ 1
-3
inferior inferior inferior | 12,215,5] - 4 11,216, 5|
2 (+) L*=8| L*=8| L*=38 L* =7 L*=1
example, Ng = 2, N¢ is represented with different glyphs latency L* = 8. Note however, that the first configuration

(see the legend), and Nz changes along the horizontal axis.
Slices S(Ng, Nc + k, Ng) for & > 0, which achieve the same
latency L* as slice S(Ng, N, Ng), are deemed inferior and
are not shown in the graph.

For each slice associated with a point in Fig. 4, Table | shows
the corresponding relaxed “promising” datapath configurations
in D*, as described in Section IlI-A. In the text, we use a
vector-set notation: (A<, My) represents a cluster with ¢ ALUs
and 7 multipliers. For presentation purposes, clusters in the
tables are shown as |4, j| pairs, where i denotes the number of
ALUs and j is the number of multipliers in the corresponding
cluster. The number on the right of each symbolic datapath
configuration in Table I is the number of data transfers N,y
needed when executing the kernel on that datapath. Every
configuration highlighted with a box is a member of the slice’s
D, identified by our design space exploration algorithm, to be
discussed shortly.

Let us consider the set D* for the slice
S(Np,Nc,Ng) = 5(6,2,2), shown in Table I.
This D* contains two datapath configurations:
D* = {{(A2,M2),(A4, M2)},{(A3, M3),(A4, M2)}}.

By definition, both configurations exhibit the same

{(A2, M2), (A4,M2)} has fewer functional units at the
expense of one additional data transfer. The three cells in
Table | marked “inferior” represent slices whose large D*
sets only contain configurations inferior to the best ones in
5(2,6,2). Specifically, the best configurations in these slices
have the same latency as S(2,6,2) (i.e.,, L* = 8) but higher
cluster capacity Ng (they correspond to a horizontal segment
with the “+” glyphs in Fig. 4).

C. Design Space Exploration Algorithm Description

Despite the high level of abstraction at which the search is
performed, the design space remains large, i.e., any exhaus-
tive algorithm becomes quickly impractical. For example, the
exhaustive exploration for the DCT-DIT benchmark discussed
above took over 20 h. Thus, we felt that there was a need to fur-
ther prune the search space.

Based on the data we collected for reasonably sized
benchmarks, we made an important structural observa-
tion concerning lexicographically minimal datapaths across
slices of the design space. We observed that, typically, in
D*(Ng,Nc + 1,Np) there exists a datapath d;, such that

896 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

Maximum number of functional units per cluster

Ne

Np

Number of clusters
W

Fig. 5. Traversal of design space slices.

N out of its IV + 1 clusters match those in some datapath d;
contained in D*(Ng, Ne, Ng):

3d; eD*(Np, N¢, Np),
dj ED*(NF,NC +].,NB) : dj C d;.

For example, in Table 1, consider the set of
configurations D* in S(5,3,2) (ie, Np = 5
Ne = 3, Ng = 2). It consists of one datapath:

d; = {(Al,M2)7(A4,M1),(A3, Mz)}. In S(5,2,2), there

is a configuration d; = {(A4,M1),(A3,M2) such that
d; C d; (the common clusters are underlined). Similarly, for
the single-cluster configuration, dy, = {(A3,M2)} C d;.
Note that the same kind of regularities can be observed in all
but one column of Table I.

We conjecture that this characteristic is a natural property
of the binding/clustering problems addressed in this paper and
may be applied to exploring the design space. By doing exhaus-
tive exploration on a representative set of benchmarks (see Sec-
tion 1V), we verified that this property could be robustly applied
to improve efficiency of early design space exploration, since
only a few (around 5%) potentially good design points were
missed or incorrectly characterized as a result of such heuristic
pruning. This simple observation permitted our design space ex-
ploration algorithm to dramatically prune the design space with
no significant impact on the quality of its results.

Our proposed algorithm generates a promising datapath
configuration for each design space slice, as presented in
Table | (boxed configurations). In other words, for each slice .S,
our algorithm identifies one datapath configuration, a member
of the corresponding set D*.6 The algorithm works in a context
of a given bus capacity Ng and traverses the slices S of the
design space as illustrated in Fig. 5. It begins with a current
maximum cluster capacity (default initial value Ny = 2) and
number of clusters N = 1. Then, it starts increasing the
number of clusters, which corresponds to filling a column of
cells in Table I. The “vertical” iteration over N stops when
adding a new cluster ceases to improve the kernel performance
(i.e., L*).” The algorithm then increases NV, and starts building
another column of the table. We consider the slices with smaller

6Recall that D* includes configurations with minimum latency (initiation in-
terval) and no more functional units than in a lexicographically minimal solu-
tion, but possibly requiring more moves.

7Recall that the performance estimation relies on our cluster assignment al-
gorithm and a simple scheduler.

parameter values first, i.e., we start with datapaths that are
likely to have better f and P characteristics. Below is a more
detailed description of the exploration process.

For a given Ny, the central procedure, genNF (), is invoked
for Np = 2,3... until the critical path latency for the original
(unbound) dataflow graph or the desired initiation interval (op-
tionally given as input) is reached. As shown below, genNF ()
first initializes an empty (i.e., N = 0) datapath configura-
tion and then repeatedly increases the number of clusters N¢
by calling addBestCluster (). The procedure genNF () termi-
nates when the introduction of an extra cluster does not improve
(L_best, Nmv_best).A simplified pseudocode description of
genNF () follows.

genNF (nf ,nb) {
L = INFNTY
Nmv = INFNTY
d = emptyDatapath(nb)
nc =0
do{
L best = L
Nmv_best = Nmv
d = addBestCluster(d) // the key element here
nc++
L = getL(d)
getNmv (d)
improved = (L < L_best) or
((L == L best) and (Nmv < Nmv_best))
if (improved) storeDatapath(nf, nc, nb, d)
twhile (improved)

}

Nmv =

Inside genNF (), the procedure call addBestCluster(d)
finds the best configuration for the new cluster (leaving
the existing clusters “untouched”) by executing three pro-
cedures; initialCluster(), balanceCluster(), and
minimizeCluster(). We found through exhaustive experi-
mentation that the best results are consistently obtained when
initialCluster() allocates the available N functional
unit slots evenly among different functional unit types (ALUs
and multipliers, for our examples). When Ny does not permit
an even assignment, the remaining slot is assigned to the
functional unit type that supports the dominating operation type
in the dataflow. Such initial balance delivers the best results

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION 897

TABLE 11
BENCHMARK SUITE

4 connected | critical | exploration
Name # nodes components path time, sec
EWF 34 1 14 196
ARF 28 1 8 47
FFT 38 1 4 1705
DCT-LEE 49 2 9 393
DCT-DIF 41 2 7 412
DCT-DIT 48 1 7 1150
DCT-DIT-2 96 2 7 23135
SWIM1 26 3 4 760
AMMP 24 1 3 728
MEST-S 24 1 6 537
MEST-A 24 1 6 455
MEST-S-2 48 3 6 663

even for highly asymmetric dataflows like DCT-DIT with 36
ALU operations and only 12 multiplications. The rationale is
to use the least biased cluster (if there is a choice) to provide
more flexibility for binding when new clusters are added.

Then, balanceCluster () tries to improve the datapath per-
formance by reassigning some of the functional unit slots in the
new cluster to a different functional unit type. As mentioned
above, L and N,y are estimated for each generated datapath
configuration using our binding algorithm [24] along with a list
scheduler. Note that the procedure balanceCluster() does
not change the number of functional units in the new cluster,
which is set to the maximum (i.e., Ng). Thus, in the worst case
the algorithm needs to check V- — 3 configurations. In practice,
however, we have observed that balanceCluster () rarely has
to explore more than three configurations, even for a large Ng.

During the last stage, we optimize the new cluster. Specifi-
cally, ninimizeCluster () removes functional units from the
cluster one by one (interleaving the functional unit types) and
terminates when attempts to further remove any functional units
fail to preserve L_best and Nmv_best.

IV. DESIGN SPACE EXPLORATION ALGORITHM VALIDATION
AND RESULTS

Table 1l summarizes key characteristics of the representa-
tive benchmarks selected for experimental validation of our de-
sign space exploration algorithm. These include an elliptic wave
filter (EWF), an auto regression filter (ARF), a version of a fast
Fourier transform (FFT) algorithm which is the main kernel in
the RASTA benchmark from MediaBench [32], various discrete
cosine transform (DCT) and motion estimation (MEST) algo-
rithms, as well as the DCT-DIT-2 and MEST-S-2-unrolled ver-
sions of the DCT-DIT and MEST-S algorithms.8 In order to as-
sess the performance of the algorithms in a different application
domain we also selected some additional computationally in-
tensive kernels from SPEC2000 (floating point) [33]—SWIM1
and AMMP.

A. Algorithm Validation

As stated in Section 111, the objective of the design space ex-
ploration algorithm is to identify one datapath configuration in
the set D* associated with each slice .S it considers. In doing so,

8MEST-S-2 was additionally software pipelined after unrolling.

it also determines the best achievable latency L* for each such
slice S. As mentioned above, for investigation and validation
purposes, we performed an exhaustive exploration to determine
the complete sets D* for each of the slices to be considered, for
most of our benchmarks.® A set of results of such an exhaustive
exploration for the DCT-DIT was presented in Table I.

Depending on the kernel, the number of slices generated by
the exhaustive exploration ranged from 7 to 25 per benchmark.
A total of 112 slices over all benchmarks were built by the ex-
haustive exploration. The design space exploration algorithm
was able to identify one element in D* for 107 out of the 112
slices (i.e., succeeded in about 95% of the cases). In some cases
where the design space exploration algorithm failed to iden-
tify a datapath in the corresponding D* set (e.g., S(10,2,2)
in Table 1), it still found a datapath configuration achieving the
optimal latency L*, but with a total number of functional units
larger than 7. In a few other cases (e.g., S(6,2, 1) in MEST-S
benchmark for a single cycle bus) the algorithm failed to iden-
tify a datapath with the optimal latency L*. As mentioned above,
the FFT and DCT-DIT-2 benchmarks had to be validated man-
ually. The design space exploration algorithm generated 46 de-
sign space slices for these two benchmarks and only failed to
correctly identify two configurations, missing the best latency
L* by one clock cycle in both cases. This brings the overall ex-
perimental success rate of the design space exploration algo-
rithm to just above 95%.

The CPU time (in seconds) required by the design space ex-
ploration algorithm when executed on an IBM RS6000 595 is
presented in Table Il. Most of the execution time is spent on
the underlying binding algorithm. We must add that the design
space exploration algorithm delivers a dramatic reduction in ex-
ecution time as compared to the exhaustive exploration, e.g., for
the DCT-DIT benchmark it executed 60 times faster.

B. Discussion of Results

Tables 111-VI summarize the results obtained by the design
space exploration algorithm. For these experiments we assume
datapaths with two buses (Np = 2), with the bus latency
lat(BUS) = 1and lat(BUS) = 2 clock cycles (left and right
group of columns correspondingly). Each data cell in the table
corresponds to a design space slice defined by the remaining
two parameters Np and Nc. The first set of results for each
benchmark is the best schedule latency (initiation interval)
L* obtained for each slice identified by the design space
exploration algorithm. The second and the third sets are latency
and functional unit penalties discussed in the sequel. The L*
values for the DCT-DIT-2 example are presented graphically
in Fig. 6.

A simple initial observation of the results shows that, for
a given time-critical kernel and overall design space region
(specified by the designer), there may be several slices ex-
hibiting the same or close latencies. For example, in Table IV,
for the DCT-DIT kernel and datapaths with lat(BUS) = 1,
slices S(8,1,0)° and S(3,3,2) have L* = 10. The two

gUnfortunately, exhaustive exploration was not feasible for two benchmarks,
FFT and DCT-DIT-2, due to the very large space of possible designs.

10Note that no intercluster communication is required in a single-cluster data-
path (N5 = 0).

898

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

TABLE 1l

DESIGN SPACE EXPLORATION RESULTS

FOR EWF, ARF, FFT—(Np =

2)

EWF lal(BUS) =1 I EWF [ai(BUS) =2
Nr 37 3] 4] 5 6 7] 8] 9Jwjriiz]] 2] 3] 4] 5] 6] 7] 8] 910] 1112
‘Ne Schedule Tatencies
T 27 [16 [16 | 14 27 16 [16 | 14
2 17 | 15 | 15 17115] 15
3 15 14 16
Latency penalty
1 -— —_ —_ - - — - —
2 1 1 1 1 1 1
3 1 0 2
Functional unit penalty
I - - — - — — — —
2 1 2 2 1 2 2
3 2 4 2
ARF lai(BUS) =1 ARF 1at(BUS) =2
"N 2] 31 47 5] 6] 71T 8T 9101112 21 3] 47 5] 6] 7 8 91011]12
Neo Schedule latencies
T I9713]10] 10 8 IO7J13]107] 10 8
2 11| 10 13 | 12
3
Latency penalty
1 = - - = p p = pas = -
2 1 2 3 4
3
Functional unit penalty
1 — — - — - P — — — -
2 0 2 1 3
3
FFT lai(BUS) =1 FFT lai(BUS) =2
N 2] 3 41 5[6 77 817 9101112 2] 3] 4] 51 6 7] 8] 9J10J11]12
Nco Schedule latencies
1 26]18[14[11]10] 8] 8] 7 7 6 626181411 J10] 8] 8] 7 7 6 6
2 14 1 10 8 7 6| 6] 6| 6 5 5 51 14| 10 8 7
3 10 8 7 6 6 51 5 10 8
4 9 7 7
5 8 7 6
Latency penalty
1 — — — — - — — — — — — — — — — — — — - — - -
2 0 0 0 1] ojo}jofo 0 0 0 0 0 0 0
3 0 1 1 1 1 0 1 0 1
4 1 1 2
5 1 1 1
Functional unit penalty
1 - — —_ — — — —_ o - — o — — — - — — — —_ o _ -
2 0 0 0 1 1 1 1 2 6 1 2 0 0 0 1
3 0 2 3 3 4 5] 8 0 2
4 1 2 8
5 3 6 6

configurations in these slices are interesting to compare
because they show that the DCT-DIT kernel is actually very
“cluster-friendly” (despite its dataflow graph having a single
connected component)—the latency achieved by executing it
on a datapath with three functional units per cluster is identical
to that achieved on a (costly) centralized datapath with eight
functional units.

This example emphasizes the importance and convenience of
the technology-independent design space exploration phase ad-
dressed in this work. As mentioned in Section II-A, a key ad-
vantage of our approach is in decoupling physical from appli-
cation-specific figures of merit. Thus, collections of promising
datapaths along with L* for each slice (such as those shown in
Fig. 6 or Table I) can be generated and stored in a technology-in-
dependent library for various fundamental algorithm kernels,
DCTs, FFTs, etc. When the kernel is needed for an application,
delay and power estimates can be performed (and/or upgraded
to a new implementation technology).

Another interesting observation is that the increase of the data
transfer operation latency (see Tables I11-V1) often does not af-
fect significantly the L* of slices with a small number of clus-

ters. As one may expect, though, datapaths with a larger number
of clusters and a larger Ny are more affected by a slower bus.
Thus, bus latency increase effectively reduces the number of rel-
evant slices. This is especially noticeable in the case of the FFT
benchmark.

C. On Effectiveness of Clustered Datapaths

We conclude this discussion with an analysis of our experi-
mental data aimed at roughly assessing cost/performance trade-
offs implemented by clustered versus nonclustered datapaths.
For this purpose, we introduce two metrics: latency penalty and
functional unit penalty. We define the latency penalty AL(d)
of a given clustered datapath d as the increase in schedule la-
tency, as compared to that achievable on a centralized datapath
with the same total number of functional units 7 available
in d and the best functional unit mix. Similarly, the functional
unit penalty ATr(d) corresponds to the increase in the number
of functional units in d, with respect to the T of the smallest
centralized datapath that achieves the same schedule latency L.
It is important to keep in mind that these “penalties” are very

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION

TABLE IV

DESIGN SPACE EXPLORATION RESULTS FOR DCT ALGORITHMS—(N 5

2)

DCT-LEE ai(BUS) = 1

DCT-LEE la(BUS) =2

819J10|11[12H

Nr 27 3] 4] 5] 61 7] 2] 3] 4] 57 6] 7] 8 91011 J12
Nc¢ Schedule Tatencies]
1 di[T21fI6 131110 9 SIJT2TT16 13 f 11| 10 9
2 16 | 12 | 10 16 | 13 | 10 |
3 12 13
Latency penalty
T = = = - - = = = - = = = = g
2 0 1 1 0 2 1
3 2 3
Functional unit penalty
1 — - - - —_ —_ - — - - — - — —
2 0 0 1 0 1 1
3 0 1
DCT-DIF lat(BUS) =1 DCT-DIF [ai(BUS) = 2
Nr 2T 37T A 5 6T 7 8 91w JIIgJiz 2T 3T 47 5] 6] 7T 8] 9J10oJ 1112
Nc Schedule Tatencies
1 2071571310 8 8 81 7 29715713710 8 8 81 7
2 15 | 10 9 8 7 15| 10 | 10 8 7
3 11 12
Latency penalty
1 — — - _ - — —_ — - —_ - — - - - —
2 2 2 1 0 0 2 2 2 0 0
3 3 4
nctional unit penalty
1 — e —_ -— - - — — - - - - = — —_ —_
2 1 1 1 0 2 1 1 2 0 2
3 1 1
DCT-DIT [ai(BU3) = 1 il DCT-DIT lai(BUS) = 2
Nell 2] 3] 31 51 6] 7[SB[9 0[i[i2) 2] 3] 4] 5] 6] 7[8[90112
N¢ Schedule Tatencies
1 3712319141211]10 9 8 8 7 3723191412711 10 9 8 8 7
2 19112110 9 8 8 81 8 7 1911211 9 9 8 8| 8 7
3 13 | 10 9 8 13 10
4 11 12
Latency penalty
T p= = s - = = — T = = = = p = = = pas p = = = p
2 0 0 0 1 1 1 1 1 0 0 0 1 1 3 1 1 1 0
3 1 1 1 1 1 2
4 1 2
Function unit penalty
1 - —_ — — — — — P — - — — — - — — — — - - — —
2 0 0 0 1 2 2 0 0 0 1 1 2
3 0 1 1 3 0 1
4 1 2
TABLE V
DESIGN SPACE EXPLORATION RESULTS FOR SWIM1 AND AMMP KERNELS FROM SPEC2000 FP—(Np = 2)
SWIM1 lai(BUS) =1 i SWIM1 lat(BUS) =2
Nell 2] 31 4] 5[6] 7] 8[9[0[11J12] 2] 3] 4[5 6] 7] 8] 9[I0][11]12
N¢ Schedule Tatencies
1 18 1 11) 7 [§] 6 5 18 T 11 9 7 6 6 5
2 9 7 6 5 5 9 7 6 5 5
3 6 5 4 7 6 . 4
Latency penalty
1 — — — — — — P — — — — — - - - — —- - - —_ - —
2 0 1 1] 0 0 (1} 1 0 0 0
3 0 0 0 1 1 0
Functional unit penalty
] - — —_ — — —_ P = — - j— - - . — — — —_ - — _ —
2 0 1 1 1 1 0 1 1 1
3 0 1 0 1 2 0
AMMP lat(BUS) =1 AMMP 1at(BUS) =2
Nr 2] 31 4] 5T 6] 7T 8T 9T10J11]12 27 3T A 5] 61 T 8T 9101112
Nc Schedule Iatencies
1 BTI2F 87T 8] 6 5] 5T 5 4 4 ITisfr2] 878761 5 51 5 £} 4 4
2 8 61 5 4 8 71 6
3 6 7
Latency penalty
1 — - — — -_ - —_ —_ —_ -— p. —_ - - - — — —_ —_ - - -
2 0 0 0 0 0 1 1
3 0 1
Functional unit penalty
1 - —-— — - - - — -— - - — - - - - - —_ - -— - - -
2 1] 0] 1 1 1] 0| 2
3 0 1

899

900 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

TABLE VI
DESIGN SPACE EXPLORATION RESULTS FOR MOTION ESTIMATION KERNELS—(Np = 2)
MEST-A 1at(BUS) =1 I MEST-A 1at(BUS) =2
Nr 2] 3] 41 5] 6 7| 8 oJo[it[i2|f 2] 3] 47 57 6] 7] 8] 9J10J11]12
N¢ Schedule Tatencies
1 13 710 8 8 7 7 6 13710 8 8 7 7 6
2 91 8 7 10 8
3 8 7 8
4 7)
Latency penaity
1 — — — — = = —_ - = — — — - — — — — — _ — =
2 1 1 0 2 0
3 0 1 1
4 0
Functional unit penalty
1 ~— - — - - - - . — - J— - - - - - - - - - - -
2 1 2 1 1 1
3 1 2 2
4 0
MEST-S lat{BUS) = 1 I MEST-S 1at(BUS) =2
Nr 37 3] 4] B8] 6] 7 8] o012z 27 3T 4] 5] 6] 7] 8] 9J10J11]12
“N¢ Schedule Tatencies
1 16 1 13 9 9 8 8 7] 7] 71 7] 716 13 g 9T 81 81 7] 7 T 71 7
2 10 9 8 7 11 | 10 8
3 9 10 9
Latency penalty
1 s — — — - - - - - —_ —_ - — - - - —_ - - - - -
2 1 1 0 0 2 1 1
3 1 2 1
Functional unit penalty
1 — - — — - - — - - - - - - - — - - - - - - -
2 1 2 1 0 1 1 2
3 2 2 3
-8-2 1ai(BUS) = 1 Il EST-5-2 1ai(BUS) =2
Nr 571 3] 4] 5] 6] 7 8] 9[W0JII 12| 2] 3] 41 5] 6] 7] 8] 9[0T 12
Nc Schedule Tatencies
1 3271816 JIT] 10 8 8 7 7 7 73271816 11 [10 8 8 7 7 7 7
2 16 | 10 8 7 16 | 11 9 8 7
3 11 9 7 11 9 8
4 9 8 10
Latency penalty
1 — — — P pay — — py — — — P — — - — P — - — — —
2 0 0| ¢ 0 0 1 1 1
3 1 1 0 1 2 1
4 1 1 2
Functional unit penalty
1 - — - = — P —_ = - —_ - —_ - —_ _ - - - - - -
2 0 0 1 2 0 1 2 2
3 1 1 3 1 3 3
4 2 3 2

pessimistic, since, for example, typically a clustered datapath
would support a faster clock rate than the centralized machine
that was used as the baseline, and thus an increased latency does
not necessarily translate to an increased execution delay.

The experimental results in Tables 111-VI suggest that clus-
tered datapaths often incur a very low (sometimes zero) latency
penalty, and thus the cost/performance tradeoffs unlocked by
considering such datapaths are likely to be systematically ben-
eficial from the point of view of execution delay, energy/power
consumption, and silicon area. This is particularly true when the
latency of data transfers is not significantly larger than the laten-
cies of regular operations.

V. PrREvIOUS WORK

Hekstra et al. [34] present methods and tools to perform de-
sign space exploration concerning the precise functional unit
configuration for a VLIW core to be used in future TriMedia
processors. Prior to the design space exploration step discussed
in the paper, it was decided that the CPU64 VVLIW core would
Fig. 6. Design space characterization for DCT-DIT-2 (Nz = 2, have a single register file and five issue slots, in which 30 dif-
lat(BUS) = 1). ferent types of functional units could be placed. The objec-

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION 901

tive was thus to determine how many functional units of each
type were needed and where to place these in the issue slots.
Note that the set of functional units placed in a single issue slot
share two read ports and one write port to the register file. In
summary, then, the parameters addressed in this paper had al-
ready been defined prior to the design space exploration step dis-
cussed by Hekstra et al. [34], namely, number of clusters (= 1)
and the cluster capacity (= 5). This example confirms that, in
practice, the first datapath parameters to decide upon should be
those addressed in this paper, and that other important (more
detailed) optimizations, including port sharing, should be un-
dertaken after the vast design space is properly reduced to a few
slices of interest.

Another important body of research focuses on design space
exploration and synthesis using trace-driven simulation tech-
niques. Wu and Wolf [35], for example, describe a method for
performing datapath design space exploration for a clustered
VLIW datapath aimed at implementing an MPEG-2 encoder.
The main contributions of the paper are the use of a trace-driven
scheduling algorithm and the development of a method for
quickly generating a rough estimate of the impact on cycle
count when varying certain datapath resources with respect to a
baseline. Still, the authors remark that only a limited number of
datapath configurations could be examined in reasonable time
using their technique, and plan to devise search techniques that
can explore the space more efficiently.

Capitanio et al. [36] performed design space exploration of
clustered (“limited connectivity”) VLIW datapaths in the con-
text of straight line code in loops. However, in their work they
considered only predefined homogeneous clusters, i.e., clusters
with identical number of “universal” functional units. In con-
trast, our design space exploration algorithm actually generates
heterogeneous cluster configurations.

Fisher et al. [37] described a methodology to design clus-
tered VVLIW processors customized for a given application or a
set of applications. A highly retargetable production-level com-
piler was used in the design loop. The general philosophy of
this methodology is to “build simple hardware that does the
basic, simple operations, but uses a lot of ILP to get a speedup”
and try to match the “structures and sizes of the architecture to
the application rather than specific opcodes”. Extensive exper-
iments were performed with various datapaths configurations
and benchmarks. In order to “avoid an exponential explosion of
runtime and data,” however, only homogeneous clusters with
only certain (predefined) combinations of ALU’s and multi-
pliers were considered during the exploration. As mentioned
earlier, our algorithm is capable of exploring design space of
heterogeneous clusters, fine-tuning each cluster to match appli-
cation’s kernel(s).

A large body of work is available in the high-level synthesis
literature addressing design space exploration focusing on
area, schedule length, and clock rate dimensions. Many such
approaches assume that the delay of functional units dominates
the system delay; see e.g., [38]. Unfortunately, such an assump-
tion does not hold for our problem of interest; see the previous
discussion on critical design space parameters.

Extensive research is being performed in the area of high per-
formance datapath synthesis for digital signal processing appli-

cations, e.g., [4], [22], [39], [40]. Below we discuss a represen-
tative example, the Cathedral [4] high level synthesis system,
developed at IMEC. Cathedral uses an architectural style based
on ASU. ASUs are datapaths comprised of chained functional
units “matching” carefully selected parts of the application flow
graph. Thus, their adopted structural hierarchy defines a design
space, and an exploration methodology, quite different from
those addressed in this paper. (Similar contrasts can be made
to other high-level synthesis approaches.)

Yet another contribution relevant to the work discussed in
this paper is the program-in-chip-out (PICO) system synthesis
and design space exploration tool [41]-[45] developed at HP
Labs. In what follows, we discuss PICO-VLIW [43], [44], the
component of the PICO tool that designs application-specific
VLIW processors. In PICO-VLIW, the design of an application-
specific VLIW processor is supported by three closely interre-
lated subsystems: 1) Spacewalker, the design space explorer; 2)
VLIW Architecture Synthesis Subsystem, which takes the ab-
stract architecture specification generated by Spacewalker and
outputs an RTL-level VHDL description of the processor, as
well as an area estimate for the processor; and (3) Elcor, a re-
targetable compiler for VLIW processors, which generates the
application code (for the custom VLIW processor) and evaluates
overall performance by counting the number of cycles taken to
execute the program [41], [44]. The authors remark that, during
the design space exploration, the decision on the next abstract
architecture to consider is done by the Spacewalker, using the
previously generated area and cycle estimates and relying on so-
phisticated search strategies and heuristics [41], [44], [45]. The
ultimate goal is to identify all Pareto-optimal design points with
respect to latency (number of execution steps) and area. The ab-
stract architecture generated by the Spacewalker (at each search
iteration) includes: 1) a specification of the target machine’s reg-
ister files (including width in bits and number of registers, but
not number of ports); 2) a specification of the machine’s oper-
ations, a subset of the HPL-PD repertoire [46]; and 3) a char-
acterization of the machine’s “level of ILP,” specified in terms
of a number of concurrent and exclusion operation groups/con-
straints—note that such constraints are to be later used by the
Architecture Synthesis Subsystem, to explore opportunities for
register port sharing, as well as sharing of instruction bits [44].

PICO-VLIW is a remarkable tool in that it successfully au-
tomated the design of custom VLIW processors. In contrast to
our work, however, in publications on PICO-VLIW we have
not found concrete information on strategies and/or heuristics
directly or indirectly exploring clustering of datapaths. For ex-
ample, the abstract architecture specification used to illustrate
the discussion on PICO-VLIW [44] contains a single general-
purpose register file, and no information is provided on how
such a decision was made. Moreover, as alluded to above, in
PICO-VLIW the number of ports on each of the machine’s reg-
ister files is to be determined by the VLIW Architecture Syn-
thesis Subsystem, using the operation constraints specified by
the Spacewalker; thus, the Spacewalker can only indirectly exer-
cise control over this important parameter. In contrast, our early
design space exploration focuses directly on those aspects of the
VLIW processor datapath configuration (i.e., of the machine’s
hardware) that are likely to have a first-order impact on the most

902 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

critical physical figures of merit, that is, on the machine’s sus-
tainable clock rate f and power dissipation P. In doing so, it
explicitly considers/explores fundamental strategies for hierar-
chical organization of datapath resources that are known to be
effective for high-performance VLIW processors, such as clus-
tering. (In addition, see also discussion in Section Il on post-
poning decisions on refinement of functional units/port sharing
and register file sizes).

Dutta and and Wolf [47] describe a detailed design method-
ology for video signal processing datapath elements. The ar-
ticle shows how the insight on circuit implementation is used
in architectural design of a programmable video signal pro-
cessor. Critical tradeoffs between the number of register file
ports, number of registers, the depth of datapath pipeline, and
the clock frequency are considered by the methodology. The
authors developed parameterized delay estimation models for
register files of different size and number of ports as well as
for adders and multipliers with different pipeline depths. The
models were verified by designing actual CMOS layouts. The
methodology was evaluated for DCT and motion estimation al-
gorithms. For each algorithm, a number of design points with
different degree of pipelining and different number of register
ports were generated. The structure of processing elements in
the explored architecture is fixed (two adders, one multiplier,
and one accumulator). The possibility of heterogeneous pro-
cessing elements considerably increases the complexity of the
design space and requires an algorithm that can automatically
assign operations to functional units in different processing el-
ements.

Finally, as mentioned in Section 11-C, Jacome et al. [15] pro-
posed a clustered ASIP VLIW datapath design space explo-
ration methodology. The algorithm [15] is to be used prior to
the design space exploration phase described in this paper, as il-
lustrated in Fig. 3(c), to quickly identify regions of interest (that
is, ranges of parameters Ny, N¢, and Ng) in the design space.

VI. CONCLUSION AND FUTURE WORK

We have presented a kernel-specific and technology-inde-
pendent methodology for performing early design space explo-
ration of clustered VLIW ASIP datapaths. A design space pa-
rameterization and key abstractions were introduced to support
the proposed design space exploration. The design space explo-
ration phase discussed in this paper is one of the components of
the NOVA framework [48], [49], currently under development,
illustrated in part in Fig. 3.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their sug-
gestions and constructive criticism.

REFERENCES

[1] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D.
Owens, “Register organization for media processing,” in Proc. 26th Int.
Symp. High-Performance Computer Architecture, May 1999.

[2] V.Agarwal, H. S. Murukkathampoondi, S. W. Keckler, and D. C. Burger,
“Clock rate versus IPC: The end of the road for conventional microar-
chitectures,” in Proc. 27th Int. Symp. Computer Architecture, June 2000,
pp. 248-259.

(3]

(4]

(5]

(6]

(7]

(8]

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “The multicluster
architecture: Reducing cycle time through partitioning,” in Proc. 30th
Ann. Int. Symp. Microarchitecture, Dec. 1997.

W. Geurts, F. Catthoor, S. Vernalde, and H. DeMan, Accelerator
Data-Path Synthesis for High-Throughput Signal Processing Applica-
tions. Boston, MA: Kluwer, 1997.

H. Wang, N. Dutt, A. Nicolau, and K.-Y. S. Siu, “High-level synthesis of
scalable architectures for IIR filteres using multichip modules,” in Proc.
30th ACM IEEE Design Automation Conf., 1993.

J. Van Praet, G. Goossens, D. Lanneer, and H. De Man, “Instruction set
definition and instruction selection for ASIP’s,” in Proc. 7th Int. Symp.
High-Level Synthesis, May 1994, pp. 10-16.

C. Liem, T. May, and P. Paulin, “Register assignment through resource
classification for ASIP microcode generation,” in Proc. Int. Conf. Com-
puter-Aided Design, Nov. 1994, pp. 397-402.

R. P. Colwell, W. E. Hall, C. S. Joshi, D. B. Papworth, P. K. Rodman,
and J. E. Tornes, “Architecture and implementation of a VLIW super-
computer,” in Proc. Supercomputing 90, Branford, CT, Nov. 1990, pp.
910-919.

P. Faraboschi, G. Desoli, J. A. Fisher, and G. Desoli, “Lx: A technology
platform for customizable VLIW embedded processing,” in Proc. 27th
Ann. Int. Symp. Computer Architecture, Vancouver, BC, Canada, June
2000.

P. Faraboschi, G. Desoli, and J. A. Fisher, “Clustered Instruction-Level
Parallel Processors,” Hewlett-Packard Co., HPL-98-204, 1998.

J. Fritts, Z. Wu, and W. Wolf, “Parallel media processors for the billion-
transistor era,” in Proc. Int. Conf. Parallel Processing, Aizu, Japan, Sept.
1999.

C. Basoglu, K. Zhao, K. Kojima, and A. Kawaguchi. (2000) The
MAP-CA VLIW-Based Media Processor. Equator Technol. Inc. and
Hitachi Ltd.. [Online]. Available: http://equator.com.

TMS320C6000 CPU and Instruction Set Reference Guide, Texas Instru-
ments Incorporated, 2000.

ADSP-TS001M TigerSHARC DSP Product Description. Analog
Devices. [Online]. Available: http://www.analog.com/products/descrip-
tions/ADSP-TS001.html.

M. F. Jacome, G. de Veciana, and V. Lapinskii, “Exploring performance
tradeoffs for clustered VLIW datapaths,” in Proc. 2000 IEEE/ACM Int.
Conf. Computer-Aided Design (ICCAD-2000), Nov. 5-9, 2000.

D. Burger and J. R. Goodman, “Guest editors’ introduction: Billion-tran-
sistor architectures,” IEEE Trans. Comput., vol. 30, pp. 46-48, Sept.
1997.

P. Marwedel and G. Goossens, Eds., “Code generation for embedded
processors,” in Kluwer International Series in Engineering and Com-
puter Science. Boston, MA: Kluwer, 1995.

C. Liem, Retargetable Compilers for Embedded Core Processors:
Methods and Experiences in Industrial Applications. Boston, MA:
Kluwer, 1997.

J. Llosa, E. Ayguad, and M. Valero, “Quantitative evaluation of register
pressure on software pipelined loops,” Int. J. Parallel Programming, vol.
26, no. 2, 1998.

R. Govindarajan, E. R. Altman, and G. R. Gao, “Minimizing reg-
ister requirements under resource-constrained rate-optimal software
pipelining,” in Proc. 27th Ann. Int. Symp. Microarchitecture, Nov.
1994, pp. 85-94.

A. E. Eichenberger and E. S. Davidson, “Stage scheduling: A technique
to reduce the register requirements of a modulo schedule,” in Proc. 28th
Ann. Int. Symp. Microarchitecture, Nov. 1995, pp. 180-191.

C. M. Chu and J. M. Rabaey, “Hardware selection and clustering in the
HYPER synthesis system,” in Proc. IEEE Eur. Conf. Design Automa-
tion, Mar. 1992.

J. L. Van Meerbergen, P. E. R. Lippens, W. F. J. Verhaegh, and A. Van
Der Werf, “PHIDEO: High-level synthesis for high throughput applica-
tions,” J. VLSI Signal Processing, vol. 9, no. 1/2, pp. 89-104, Jan. 1995.
V. Lapinskii, M. F. Jacome, and G. de Veciana, “High-quality operation
binding for clustered VVLIW datapaths,” in Proc. 38th IEEE/ACM Design
Automation Conf. (DAC-2001), June 18-22, 2001.

V. Lapinskii, “Algorithms for compiler-assisted design space explo-
ration of clustered VLIW ASIP Datapaths,” Ph.D., Univ Texas at
Austin, 2001.

J. M. Rabaey and M. Pedram, Eds., Low Power Design Methodolo-
gies. Boston, MA: Kluwer, 1996.

F. Catthoor, S. Wuyack, E. Degreef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle, Custom Memory Management Methodology: Explo-
ration of Memory Organization for Embedded Multimedia System De-
sign. Boston, MA: Kluwer, 1998.

LAPINSKII et al.: APPLICATION-SPECIFIC CLUSTERED VLIW DATAPATHS: EARLY EXPLORATION

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

M. J. Wolfe, High Performance Compilers for Parallel Com-
puting. New York: Addison-Wesley, 2000.

P. R. Panda, A. Nicolau, and N. Dutt, Memory Issues in Embedded Sys-
tems-on-Chip: Optimizations and Exploration. Boston, MA: Kluwer,
1999.

P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and memory
optimization techniques for embedded systems,” ACM Trans. Design
Automation Electron. Syst., vol. 6, no. 2, pp. 149-206, Apr. 2001.

C. Akturan and M. F. Jacome, “An effective software pipelining algo-
rithm for clustered embedded VVLIW processors,” Int. J. Design Automa-
tion Embedded Syst., 2002.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems,” in Proc. 30th Ann. Int. Symp. Microarchitecture, 1997, pp. 330-5.
K. Dixit, “Performance SPECulations—Benchmarks, friend or foe,”
in Seventh Int. Symp. High Performance Computer Architecture,
Monterrey, Mexico, Jan. 2001.

G. J. Hekstra, G. D. La Hei, P. Bingley, and F. W. Sijstermans, “Tri-
Media CPU64 design space exploration,” in Proc. |EEE Int. Conf. Com-
puter Design: VLS in Computers and Processors, Austin, TX, USA,
Oct. 1999, pp. 599-606.

Z. Wu and W. Wolf, “Data-path synthesis of VLIW video signal proces-
sors,” in Proc. 11th Int. Symp. System Synthesis, Taiwan, R.O.C., Dec.
2-4, 1998, pp. 96-101.

A. Capitanio, N. Dutt, and A. Nicolau, “Partitioned register files for
VLIWSs: A preliminary analysis of tradeoffs,” in Proc. 25th Ann. Int.
Symp. Microarchitecture, Portland, OR, Dec. 1992, pp. 292-300.

J. A. Fisher, P. Faraboschi, and G. Desoli, “Custom-fit processors: Let-
ting applications define architectures,” in Proc. 29th Ann. IEEE/ACM
Int. Symp. Microarchitecture, Paris, France, Dec. 1996.

S. Chaudhuri, S. A. Blythe, and R. A. Walker, “An exact methodology
for scheduling in a 3D design space,” in Proc. Eighth Int. Symp. System
Synthesis, Cannes, France, Sept. 13-15, 1995, pp. 78-83.

D. S. Rao and F. J. Kurdahi, “Partitioning by regularity extraction,” in
Proc. ACM/IEEE Design Automation Conf., June 1992.

E. A. Rundensteiner, D. Gajski, and L. Bic, “Component synthesis from
functional descriptions,” |EEE Trans. Computer-Aided Design, vol. 12,
pp. 1287-1299, Sept. 1993.

B. Ramakrishna Rau and M. S. Schlansker, “Embedded computing: New
directions in architecture and automation,” Hewlett-Packard Co., HPL-
2000-115, 2000.

R. Schreiber, S. Aditya, B. Ramakrishna Rau, V. Kathail, S. Mahlke,
S. Abraham, and G. Snider, “High-level synthesis of nonprogrammable
hardware accelerators,” in Proc. |EEE Int. Conf. Application-Specific
Systems, Architectures, and Processors, Boston, MA, July 2000, pp.
113-124,

S. Aditya and B. Ramakrishna Rau, “Automatic architecture syn-
thesis and compiler retargeting for VLIW and EPIC processors,”
Hewlett-Packard Co., HPL-1999-93, 2000.

S. Aditya, B. Ramakrishna Rau, and V. Kathail, “Automatic architec-
tural synthesis of VLIW and EPIC processors,” in Proc. 12th Int. Symp.
System Synthesis, Nov. 1999, pp. 107-113.

S. Abraham, B. Ramakrishna Rau, and R. Schreiber, “Fast design space
exploration through validity and quality filtering of subsystem designs,”
Hewlett-Packard Co., HPL-2000-98, 2000.

V. Kathail, M. S. Schlansker, and B. Ramakrishna Rau, “HPL-PD Ar-
chitecture Specification: Version 1.1,” Hewlett-Packard Co., HPL-93-
80(R.1), 2000.

S. Dutta and W. Wolf, “A circuit-driven design methodology for video
signal-processing datapath elements,” |EEE Trans. Very Large Scale In-
tegration Syst., vol. 7, pp. 229-240, June 1999.

NOVA Project: ASIP’s and retargetable compilers; CAD for embedded
systems. Dept. ECE, Univ. Texas at Austin. [Online]. Available:
http://horizon.ece.utexas.edu/nova/

M. F. Jacome and G. De Veciana, “Design challenges for new application
specific processors,” |IEEE Design Test Computers, vol. 17, pp. 40-50,
Apr.—June 2000.

903

Viktor S. Lapinskii (S’96-M’01) received the Ph.D.
and MSEE degrees from the University of Texas at
Austin and the BSEE degree from the Moscow Insti-
tute of Radioengineering, Electronics, and Automa-
tion.

He is currently a postdoctoral Fellow in the De-
partment of Electrical and Computer Engineering,
University of Texas at Austin, and will soon be
joining AmmoCore Technology. His research
interests include high-level synthesis, compilation
techniques for limited connectivity architectures,
and VLSI information modeling at multiple levels of abstraction.

Dr. Lapinskii is a co-recipient of the IEEE/CAS William J. McCalla Best
ICCAD Paper Award for 2000.

Margarida F. Jacome (S’92-M’94-SM’01) received the B.S. and the M.S.
degrees from the Technical University of Lisbon, IST, in 1981 and 1988, re-
spectively, and the Ph.D. degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, in 1993.

She is an Associate Professor of Electrical and Computer Engineering at The
University of Texas at Austin. Her research interests include embedded com-
puting, hardware-software codesign, and high-level synthesis.

Dr. Jacome is a member of the Executive Committee of the Design
Automation Technical Committee (DATC) of the IEEE Computer Society. She
has served on the technical program committee of a number of conferences,
including the International Conference on Computer Aided Design (ICCAD),
the Design Automation and Test in Europe (DATE), the International Sympo-
sium on Hardware/Software Codesign (CODES), the International Conference
on Computer Design (ICCD), and the International Symposium on System
Synthesis (1SSS). She has served as the General Co-Chair of the Workshop
on Electronic Design Processes (EDP) in 1998 and 1999. She is a recipient
of a 1996 National Science Foundation CAREER Award. She is a corecipient
of the IEEE/ACM Design Automation Conference (DAC) Best Paper Award
for 1992 and a corecipient of the IEEE/CAS William J. McCalla Best ICCAD
Paper Award for 2000.

Gustavo A. deVeciana (S’88-M’94-SM’01) received the B.S., M.S, and Ph.D.
degrees in electrical engineering from the University of California at Berkeley,
in 1987, 1990, and 1993, respectively.

In 1993, he joined the Department of Electrical and Computer Engineering at
the University of Texas at Austin where he is currently an Associate Professor.
His research interests include the design and control of telecommunication net-
works and development of CAD tools and embedded processors for multimedia
and signal processing applications. Specific interests include performance eval-
uation, resource management, routing in large-scale networks, efficient simula-
tion, embedded clustered VLIW ASIPs and system software.

Dr. de Veciana is an Editor for the IEEE/ACM TRANSACTIONS ON
NETWORKING. He is the recipient of a General Motors Foundation Centennial
Teaching Fellowship in Electrical Engineering, 1996 National Science Foun-
dation CAREER Award, and corecipient of the IEEE/CAS William J. McCalla
Best ICCAD Paper Award for 2000.

